资源类型

期刊论文 1543

年份

2024 1

2023 60

2022 104

2021 99

2020 75

2019 103

2018 88

2017 84

2016 65

2015 88

2014 85

2013 64

2012 79

2011 78

2010 75

2009 50

2008 73

2007 88

2006 37

2005 24

展开 ︾

关键词

风险分析 9

数值模拟 5

分析 4

可持续发展 4

对策 4

影响因素 4

隧道 4

ANSYS 3

数值分析 3

裂缝 3

2035年 2

BNLAS 2

COVID-19 2

DX桩 2

HIV感染孕产妇 2

“一带一路” 2

三维 2

专利分析 2

仿真 2

展开 ︾

检索范围:

排序: 展示方式:

Quantitative analysis of CO

Xianbing LIU, Can WANG

《环境科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 12-19 doi: 10.1007/s11783-009-0011-x

摘要: The increasing volume of CO embodiment in international trade adds a layer of complexity to environmental policies and has raised arguments on the traditional production based responsibility for CO emissions. In order to help understand the quantity of CO embodiment in trade and its policy implications, this paper gives observations to recently emerging literatures that quantitatively discuss CO embodiment in trade. The analytical approaches share the principle of using input and output modeling but vary dramatically in study boundary and estimation accuracy. The calculations can be roughly categorized into three types: direct quantification of CO embodiments in multiregional trade, direct quantification of CO embodiment in bilateral trade, and indirect analysis by comparing the scenarios with or without trade. The practical estimations strongly rely on trade partner selection and data availability. An obvious imbalance of net CO embodiment in the commodity trade between major developed countries and developing economies as a whole was confirmed by these literatures. Carbon taxes and other possible limitations on CO emissions have been addressed. The consistency across the calculations could be enhanced by systematic analyses in more detail to convince the international community to take binding commitments for the reduction of global CO emissions.

关键词: CO2 embodiment     international trade     quantitative estimation     analytical approach    

iTRAQ-based quantitative proteomic analysis on differentially expressed proteins of rat mandibular condylar

null

《医学前沿(英文)》 2017年 第11卷 第1期   页码 97-109 doi: 10.1007/s11684-016-0496-1

摘要:

As muscle activity during growth is considerably important for mandible quality and morphology, reducing dietary loading directly influences the development and metabolic activity of mandibular condylar cartilage (MCC). However, an overall investigation of changes in the protein composition of MCC has not been fully described in literature. To study the protein expression and putative signaling in vivo, we evaluated the structural changes of MCC and differentially expressed proteins induced by reducing functional loading in rat MCC at developmental stages. Isobaric tag for relative and absolute quantitation-based 2D nano-high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight/ time-of-flight (MALDI-TOF/TOF) technologies were used. Global protein profiling, KEGG and PANTHER pathways, and functional categories were analyzed. Consequently, histological and tartrate-resistant acid phosphatase staining indicated the altered histological structure of condylar cartilage and increased bone remodeling activity in hard-diet group. A total of 805 differentially expressed proteins were then identified. GO analysis revealed a significant number of proteins involved in the metabolic process, cellular process, biological regulation, localization, developmental process, and response to stimulus. KEGG pathway analysis also suggested that these proteins participated in various signaling pathways, including calcium signaling pathway, gap junction, ErbB signaling pathway, and mitogen-activated protein kinase signaling pathway. Collagen types I and II were further validated by immunohistochemical staining and Western blot analysis. Taken together, the present study provides an insight into the molecular mechanism of regulating condylar growth and remodeling induced by reducing dietary loading at the protein level.

关键词: condylar cartilage     mechanical loading     proteomic analysis     iTRAQ     bioinformatics analysis    

iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic

null

《医学前沿(英文)》 2016年 第10卷 第3期   页码 278-285 doi: 10.1007/s11684-016-0453-z

摘要:

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. We aimed to find novel molecules as potential biomarkers for the early diagnosis of CRC. A serum-free conditioned medium was successfully collected from three pairs of CRC tissue and adjacent normal tissue. iTRAQ-based quantitative proteomic analysis was applied to compare the differences in secretome between primary CRC mucosa and adjacent normal mucosa. A total of 145 kinds of proteins were identified. Of these proteins, 29 were significantly different between CRC and normal tissue. Tropomyosin 2 β (TPM2) exhibited the most significant differences; as such, this protein was selected for further validation. Quantitative real-time PCR indicated that the mRNA expression of TPM2 significantly decreased in the CRC tissue compared with the paired adjacent normal tissue. Immunohistochemical analysis also confirmed that TPM2 was barely detected at protein levels in the CRC tissue. In summary, this study revealed potential molecules for future biomarker applications and provided an efficient approach for the differential analysis of cancer-associated secretome. TPM2 may be valuable for the early diagnosis of CRC.

关键词: iTRAQ     secretome     colorectal cancer     TPM2    

Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1528-5

摘要:

• Reclamation projects are important disturbances on microplastic risk in coasts.

关键词: Coastal reclamation     Engineering geotextiles     Soil microplastics     Weathering simulation     Marine emission    

Quantitative analysis of yield and soil water balance for summer maize on the piedmont of the North China

Jingjing WANG,Feng HUANG,Baoguo LI

《农业科学与工程前沿(英文)》 2015年 第2卷 第4期   页码 295-310 doi: 10.15302/J-FASE-2015074

摘要: The North China Plain (NCP) is a major grain production area in China, but the current winter wheat-summer maize system has resulted in a large water deficit. This water-shortage necessitates the improvement of crop water productivity in the NCP. A crop water model, AquaCrop, was adopted to investigate yield and water productivity (WP) for rain-fed summer maize on the piedmont of the NCP. The data sets to calibrate and validate the model were obtained from a 3-year (2011–2013) field experiment conducted on the Yanshan piedmont of the NCP. The range of root mean square error (RMSE) between the simulated and measured biomass was 0.67–1.25 t·hm , and that of relative error (RE) was 9.4%–15.4%, the coefficient of determination ( ) ranged from 0.992 to 0.994. The RMSE between the simulated and measured soil water storage at depth of 0–100 cm ranged from 4.09 to 4.39 mm; and RE and in the range of 1.07%–1.20% and 0.880–0.997, respectively. The WP as measured by crop yield per unit evapotranspiration was 2.50–2.66 kg·m . The simulated impact of long-term climate (i.e., 1980–2010) and groundwater depth on crop yield and WP revealed that the higher yield and WP could be obtained in dry years in areas with capillary recharge from groundwater, and much lower values elsewhere. The simulation also suggested that supplementary irrigation in areas without capillary groundwater would not result in groundwater over-tapping since the precipitation can meet the water required by both maize and ecosystem, thus a beneficial outcome for both food and ecosystem security can be assured.

关键词: AquaCrop     summer maize     soil water balance     water productivity    

A computational toolbox for molecular property prediction based on quantum mechanics and quantitative

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 152-167 doi: 10.1007/s11705-021-2060-z

摘要: Chemical industry is always seeking opportunities to efficiently and economically convert raw materials to commodity chemicals and higher value-added chemical-based products. The life cycles of chemical products involve the procedures of conceptual product designs, experimental investigations, sustainable manufactures through appropriate chemical processes and waste disposals. During these periods, one of the most important keys is the molecular property prediction models associating molecular structures with product properties. In this paper, a framework combining quantum mechanics and quantitative structure-property relationship is established for fast molecular property predictions, such as activity coefficient, and so forth. The workflow of framework consists of three steps. In the first step, a database is created for collections of basic molecular information; in the second step, quantum mechanics-based calculations are performed to predict quantum mechanics-based/derived molecular properties (pseudo experimental data), which are stored in a database and further provided for the developments of quantitative structure-property relationship methods for fast predictions of properties in the third step. The whole framework has been carried out within a molecular property prediction toolbox. Two case studies highlighting different aspects of the toolbox involving the predictions of heats of reaction and solid-liquid phase equilibriums are presented.

关键词: molecular property     quantum mechanics     quantitative structure-property relationship     heat of reaction     solid-liquid phase equilibrium    

Erratum to: Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 488-488 doi: 10.1007/s11783-011-0342-2

Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative

Davoud BEIKNEJAD,Mohammad Javad CHAICHI

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 683-692 doi: 10.1007/s11783-014-0680-y

摘要: In this paper the photolysis half-lives of the model dyes in water solutions and under ultraviolet (UV) radiation were determined by using a continuous-flow spectrophotometric method. A quantitative structure-property relationship (QSPR) study was carried out using 21 descriptors based on different chemometric tools including stepwise multiple linear regression (MLR) and partial least squares (PLS) for the prediction of the photolysis half-life ( ) of dyes. For the selection of test set compounds, a K-means clustering technique was used to classify the entire data set, so that all clusters were properly represented in both training and test sets. The QSPR results obtained with these models show that in MLR-derived model, photolysis half-lives of dyes depended strongly on energy of the highest occupied molecular orbital ( ), largest electron density of an atom in the molecule ( ) and lipophilicity (log ). While in the model derived from PLS, besides aforementioned and descriptors, the molecular surface area ( ), molecular weight ( ), electronegativity ( ), energy of the second highest occupied molecular orbital ( ) and dipole moment ( ) had dominant effects on logt values of dyes. These were applicable for all classes of studied dyes (including monoazo, disazo, oxazine, sulfonephthaleins and derivatives of fluorescein). The results were also assessed for their consistency with findings from other similar studies.

关键词: dye     photolysis half-life     quantitative structure-property relationship     continuous-flow     stepwise multiple linear regression     partial least squares    

Application of quantum chemical descriptors into quantitative structure-property relationship models

Yueping BAO, Qiuying HUANG, Wenlong WANG, Jiangjie XU, Fan JIANG, Chenghong FENG

《环境科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 505-511 doi: 10.1007/s11783-011-0318-2

摘要: Quantitative structure-property relationship (QSPR) models were developed for prediction of photolysis half-life ( ) of polychlorinated biphenyls (PCBs) in water under ultraviolet (UV) radiation. Quantum chemical descriptors computed by the PM3 Hamiltonian software were used as independent variables. The cross-validated value for the optimal QSPR model is 0.966, indicating good prediction capability for lg values of PCBs in water. The QSPR results show that the largest negative atomic charge on a carbon atom ( ) and the standard heat of formation (Δ ) have a dominant effect on values of PCBs. Higher values or lower Δ values of the PCBs leads to higher lg values. In addition, the lg values of PCBs increase with the increase in the energy of the highest occupied molecular orbital values. Increasing the largest positive atomic charge on a chlorine atom and the most positive net atomic charge on a hydrogen atom in PCBs leads to the decrease of lg values.

关键词: photolysis     polychlorinated biphenyls (PCBs)     quantitative structure-property relationships (QSPRs)     quantum chemical descriptors    

QUANTITATIVE STUDY ON ANTI-PEST ACTIVITY OF NATURAL PRODUCTS BASED ON VISUALIZATION FRAMEWORK OF KNOWLEDGE

《农业科学与工程前沿(英文)》 2023年 第10卷 第2期   页码 306-332 doi: 10.15302/J-FASE-2023488

摘要:

● Using visual analysis to predict the trend of natural product pest resistance.

关键词: anti-pest activity     crop protection     insect pest     natural product     visual analysis    

Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control

Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0952-4

摘要: Stimulated by the recent USEPA’s green stormwater infrastructure (GSI) guidance and policies, GSI systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well-developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst performance for high intensity and long duration events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term control strategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event.

关键词: Green stormwater infrastructure (GSI)     Combined sewer overflows (CSOs)     Urban flooding     Low impact development (LID)     Stormwater Management Model (SWMM)    

Aerodynamic impact of train-induced wind on a moving motor-van

Jiajun HE; Huoyue XIANG; Yongle LI; Bin HAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 909-927 doi: 10.1007/s11709-022-0833-1

摘要: The newly-built single-level rail-cum-road bridge brings the issue of the aerodynamic impact of train-induced wind on road automobiles. This research introduced a validated computational fluid dynamics (CFD) model regarding this concern. Such an aerodynamic impact mechanism was explored; a relationship between the transverse distance between train and motor-van (hereinfafter referred to as van) and the aerodynamic effects on the van was explored to help the optimization of bridge decks, and the relationship between the automobile speed and aerodynamic variations of a van was fitted to help traffic control. The fitting results are accurate enough for further research. It is noted that the relative speed of the two automobiles is not the only factor that influences the aerodynamic variations of the van, even at a confirmed relative velocity, the aerodynamic variations of the van vary a lot as the velocity proportion changes, and the most unfavorable case shows an increase of over 40% on the aerodynamic variations compared to the standard case. The decay of the aerodynamic effects shows that not all the velocity terms would enhance the aerodynamic variations; the coupled velocity term constrains the variation amplitude of moments and decreases the total amplitude by 20%–40%.

关键词: rail-cum-road bridge     aerodynamic impact     train-induced wind     CFD     aerodynamic force     quantitative analysis     fitting    

Design and use of group-specific primers and probes for real-time quantitative PCR

Juntaek LIM, Seung Gu SHIN, Seungyong LEE, Seokhwan HWANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 28-39 doi: 10.1007/s11783-011-0302-x

摘要: Real-time quantitative polymerase chain reaction (qPCR) has gained popularity as a technique to detect and quantify a specific group of target microorganisms from various environmental samples including soil, water, sediments, and sludge. Although qPCR is a very useful technique for nucleic acid quantification, accurately quantifying the target microbial group strongly depends on the quality of the primer and probe used. Many aspects of conducting qPCR assays have become increasingly routine and automated; however, one of the most important aspects, designing and selecting primer and probe sets, is often a somewhat arcane process. In many cases, failed or non-specific amplification can be attributed to improperly designed primer-probe sets. This paper is intended to provide guidelines and general principles for designing group-specific primers and probes for qPCR assays. We demonstrate the effectiveness of these guidelines by reviewing the use of qPCR to study anaerobic processes and biologic nutrient removal processes. qPCR assays using group-specific primers and probes designed with this method, have been used to successfully quantify 16S ribosomal Ribonucleic Acid (16S rRNA) gene copy numbers from target methanogenic and ammonia- oxidizing bacteria in various laboratory- and full-scale biologic processes. Researchers with a good command of primer and probe design can use qPCR as a valuable tool to study biodiversity and to develop more efficient control strategies for biologic processes.

关键词: absolute quantification     design guideline     primer     probe     real-time quantitative polymerase chain reaction (qPCR)    

Overview of the quality standard research of traditional Chinese medicine

Huimin Gao, Zhimin Wang, Yujuan Li, Zhongzhi Qian

《医学前沿(英文)》 2011年 第5卷 第2期   页码 195-202 doi: 10.1007/s11684-011-0134-x

摘要: Traditional Chinese medicine (TCM) has been widely used for the prevention and treatment of various diseases for a long time in China. Due to its proven efficacy, wide applications, and low side effect, TCM has increasingly attracted worldwide attention. However, one of the biggest challenges facing the clinical practice of TCM is the uncontrollable quality. In this review, the progress of the development and the current status of quality standard as well as new quality control techniques introduced in (2010 edition), such as liquid chromatography hyphenated mass spectrometry (LC-MS), fingerprint, quantitative analysis of multi-components by single-marker (QAMS), thin layer chromatography bio-autographic assay (TLC-BAA), and DNA molecular marker technique, are briefly overviewed.

关键词: traditional Chinese medicine     quality standard     quality control     quantitative analysis of multi-components by single-marker    

Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium

Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 175-185 doi: 10.1007/s11783-011-0320-8

摘要: To understand the influence patterns and interactions of three important environmental factors, i.e. soil water content, oxygen concentration, and ammonium addition, on methane oxidation, the soils from landfill cover layers were incubated under full factorial parameter settings. In addition to the methane oxidation rate, the quantities and community structures of methanotrophs were analyzed to determine the methane oxidation capacity of the soils. Canonical correspondence analysis was utilized to distinguish the important impact factors. Water content was found to be the most important factor influencing the methane oxidation rate and Type II methanotrophs, and the optimum value was 15% (w/w), which induced methane oxidation rates 10- and 6- times greater than those observed at 5% (w/w) and 20% (w/w), respectively. Ambient oxygen conditions were more suitable for methane oxidation than 3% oxygen. The addition of of ammonium induced different effects on methane oxidation capacity when conducted at low or high water content. With regard to the methanotrophs, Type II was sensitive to the changes of water content, while Type I was influenced by oxygen content. Furthermore, the methanotrophic acidophile, , was detected in soils with a pH of 4.9, which extended their known living environments.

关键词: quantitative polymerase chain reaction (PCR)     denaturing gradient gel electrophoresis (DGGE)     principal component analysis (PCA)     canonical correspondence analysis (CCA)    

标题 作者 时间 类型 操作

Quantitative analysis of CO

Xianbing LIU, Can WANG

期刊论文

iTRAQ-based quantitative proteomic analysis on differentially expressed proteins of rat mandibular condylar

null

期刊论文

iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic

null

期刊论文

Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China

期刊论文

Quantitative analysis of yield and soil water balance for summer maize on the piedmont of the North China

Jingjing WANG,Feng HUANG,Baoguo LI

期刊论文

A computational toolbox for molecular property prediction based on quantum mechanics and quantitative

期刊论文

Erratum to: Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

期刊论文

Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative

Davoud BEIKNEJAD,Mohammad Javad CHAICHI

期刊论文

Application of quantum chemical descriptors into quantitative structure-property relationship models

Yueping BAO, Qiuying HUANG, Wenlong WANG, Jiangjie XU, Fan JIANG, Chenghong FENG

期刊论文

QUANTITATIVE STUDY ON ANTI-PEST ACTIVITY OF NATURAL PRODUCTS BASED ON VISUALIZATION FRAMEWORK OF KNOWLEDGE

期刊论文

Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control

Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying

期刊论文

Aerodynamic impact of train-induced wind on a moving motor-van

Jiajun HE; Huoyue XIANG; Yongle LI; Bin HAN

期刊论文

Design and use of group-specific primers and probes for real-time quantitative PCR

Juntaek LIM, Seung Gu SHIN, Seungyong LEE, Seokhwan HWANG

期刊论文

Overview of the quality standard research of traditional Chinese medicine

Huimin Gao, Zhimin Wang, Yujuan Li, Zhongzhi Qian

期刊论文

Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium

Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO

期刊论文